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Parallelized Unstructured-Grid Finite Volume Method 
for Modeling Radiative Heat Transfer 

Gunhong Kim, Seokgwon Kim, Yongmo Kim* 
Department o f  Mechanical Engineering, Hanyang University, 

Seoul 133- 791, Korea 

In this work, we developed an accurate and efficient radiative finite volume method applicable 

for the complex 2D planar and 3D geometries using an unstructured-grid finite volume method. 

The present numerical model has fully been validated by several benchmark cases including the 

radiative heat transfer in quadrilateral enclosure with isothermal medium, tetrahedral enclosure, 

a three-dimensional idealized furnace, as well as convection-coupled radiative heat transfer in 

a square enclosure. The numerical results for all cases are well agreed with the previous results. 

Special emphasis is given to the parallelization of the unstructured-grid radiative FVM using the 

domain decomposition approach. Numerical results indicate that the present parallel unstruc- 

tured-grid FVM has the good performance in terms of accuracy, geometric flexibility, and 

computational efficiency. 
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1. Introduction 

The modeling of radiative heat transfer is im- 

portant in many engineering and industrial ap- 

plications, such as furnaces and heat exchanger of 

semiconductors. Recently, the finite-volume meth- 

od (FVM) has been emerged as the most viable 

and robust tool for analyzing the radiative heat 

transfer, due to its simplicity and ability to handle 

complex geometries. 

The radiative FVM developed by Raithby and 

Chui (1990) possesses several attractive features 

for radiation modeling. The formulation of this 

approach is based on the same computational 

mesh employed for the fluid flow and combus- 

tion calculations. Moreover, this model inherently 

ensures the global conservation of radiant energy, 
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because the inflow and outflow of radiant energy 

across control-volume faces are balanced with 

attenuation and augmentation of radiant energy 

within a control volume and a control angle. In 

this FVM, the radiative transfer equation (RTE) 

is solved for a discrete number of finite solid 

angles and the RTE for each direction is inte- 

grated over the control volume and discretized 

by the procedures similar to those for fluid flow. 

Another merit could be the flexibility and capa- 

bility to handle the arbitrary coordinate and 

control angle (Chai et al., 1995). After Raithby 

and Chui proposed the FVM for radiation, nu- 

merous computational studies have been carried 

out for planar, 3D geometry, and axisymmetry by 

using the structured and unstructured grid (Back 

et al., 1998 ; Murthy and Mathur, 1998a, 1998b ; 

Raithby et al., 1999 ; Liu et al., 2000). 

In many high-temperature systems, radiative 

heat transfer is usually strongly coupled with 

fluid dynamics and an accurate modeling of these 

problems requires a simultaneous solution of the 

RTE and the fluid dynamics equations (Chui 

et al., 1993). Thus, the radiative transfer model 
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must be computationaHy efficient for coupling the 

other submodels and numerical procedure used 
for the RTE must be compatible with the trans- 

port equations for other physical processes. In 

modeling the radiation process of the computa- 

tionally intensive thermal flow problems, it is 
recognized that the parallel processing is an es- 

sential element to drastically reduce the time re- 

quired for numerical solution (Goncalves and 

Coelho, 1997 ; Liu et al., 1999 ; Tal et al., 2003). 

Several approaches to parallelization of radia- 

tive transfer problems are available. These ap- 

proaches include angular decomposition paral- 

lelizatton (ADP) and spatial-domain decomposi- 

tion parallelization (DDP), which are natural 

choices especially in many practical situations. 

Compared to the ADP, the DDP has the more 

attractive feature, since this parallel strategy is 

widely used in parallel computational fluid dy- 
namics codes. Another reason to prefer the DDP 

is that the number of ordinates is usually mo- 

derate but the number of spatial cells can be much 

larger in realistic problems. Thus the DDP is 
leading to the much better work balance and di- 

minished communications overhead if the spatial 

grid is decomposed. Furthermore, an ADP algo- 

rithm in distributed-memory machines requires 

the storage of all variables at each cell and this 
results in a large memory requirement that could 

be too excessive for some machines. 

In the unstructured-grid system, the use of par- 

allel algorithms for the fluid transport and radia- 
tion transport would significantly complicate the 

overall parallel algorithm and increase the com- 

munication overhead. However, for very compli- 

cated systems, the labor required for grid genera- 

tion is too time consuming, and it is often the 

largest portion of the entire effort for flow analy- 

s~s. Currently, in the fluid-flow simulation, the 

unstructured-grid techniques have gained the 

wide popularity mainly due to the simplicity of 
grid generation and the flexibility of mesh adap- 

tation in the complex flow regions. Because of 

its obvious advantages, the unstructured methods 

have also begun to receive attention in the com- 

munity of radiative heat transfer previously. 

This study has mainly motivated to develop an 

accurate, efficient and stable unstructured-grid 

FVM for numerically analyzing the flow-coupled 

radiative heat transfer of the complex multi-  

dimensional thermal systems. In order to drasti- 
cally reduce the computing time in dealing with 

the large-scale practical problems, a spatial do- 
main-based parallel algorithm has been devised 

for the unstructured-grid radiative FVM in a 

distributed computing environment. Moreover, in 

the numerical simulation of arbitrary-shaped ra- 
diation problems, the present unstructured-grid 

FVM adopts the pixelation procedures (Murthy 

and Mathur, 1998a) to treat the control angle 

overlapping problem which is inevitably occur- 

ring in computation for complex unstructured- 

grid systems. 

The present numerical approach has fully been 
validated against the well-known benchmark 

cases. The validation cases include the radiative 

heat transfer in quadrilateral enclosure with iso- 

thermal medium, tetrahedral enclosure, a three- 

dimensional idealized furnace, as well as convec- 

t ion-coupled radiative heat transfer in a square 

enclosure. Numerical results obtained in this 

study confirm that the present parallel unstruc- 

tured-grid FVM has the satisfactory capability 

for analyzing the flow-coupled radiative heat 

transfer of  the geometrically and physically com- 
plex thermal systems in terms of accuracy, geo- 

metric flexibility, and computational efficiency. 

2. M a t h e m a t i c a l  Formulat ion  

2.1 Radiative transfer equation 
The RTE for a gray absorbing, emitting, and 

scattering gas in a specified direction 8 at any 
position r may be written as (Modest, 1993) 

dl (r, s) _ 
ds [~(r)+a(r)]I(r, s )+x(r ) i ( r )  

a(r) . ,  
+~-~ fI~r,__ s')~(s', s) d#" 

4x 

(1) 

where I (r ,  s) is the radiative intensity, which is 

a function of position and direction ; 1~ (r) is the 

black-body radiative intensity at the temperature 
of the medium ; r and cr are the absorption and 
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scattering coefficients, respectively ; ~ (s ' ,  s) and 

is the scattering-phase function from the incom- 

ing 8' direction to the outgoing direction s. In 

the Cartesian coordinates (x, y, z) ,  the spatial 

derivative term in Eq. (1) can be written as 

dI dI , ~91 , $ aI ~ =  # ~ - r  ~-~-~ ( id im-  2) (2) 

where/2, r/, and ~e are the direction cosines along 

the Cartesian coordinates x, y, and z directions, 

idim denotes the dimensionality of  the problem 

and is equal to 2 for a 2D planar geometry and 3 

for a 3D geometry. 

All boundaries are assumed to be gray-diffuse. 

Under this assumption, the wall bounding the 

medium emits and reflects diffusely. The wall 

boundary intensity Iw for all outgoing direction 

( s - n < 0 )  is given by 

3. Unstructured-Grid  Finite 
Volume Method 

3.1 Diseretization 
The RTE, Eq. (1) involves not only spatial 

differentiation but also the angular integration 

over the solid angle ~0. To solve this equation 

numerically, both spatial domain and angular 

domain must be discretized at first. In this study, 

an unstructured control volume method is used 

to discretize the spatial domain. The computa- 
tional domain is identified and divided into 

many volume cells as seen in Fig. l ( a ) .  The 

cell types vary from triangular to quadrilateral  

for 2D problems and tetrahedral, prism, pyra- 

mid, to hexahedral for 3D problems. The cell 

type in each problem can be single or mixed. All  

lw=elb(r~)+ l - e  fI(r~, s)s.nd~2 (3) 
8 - r t > 0  

where e is the wall emissivity and the unit vec- 

tor n is the surface normal pointing out of the 

domain. 

2.2 Energy equation 
For  problems in which the heat transfer due to 

radiation is considered, it is necessary to solve the 

energy equation including the addit ional  source 

term of the radiative heat transfer. If, for sim- 

plicity, the specific heat capacities are all equal 

and constant, the pressure is constant, the energy 

equation of  temperature form becomes 

aT  
p e p  ~T-+ pcpv" A T 

=V" (AVT) +Sh+V'qRad 
(4) 

Here, Sh contains the source of  energy (i.e. the 

heat release due to combustion) and V" qRaa is the 

addit ional  source of radiative energy loss. This 

radiative energy loss term for a gray absorbing, 

emitting, and scattering gas will be obtained from 

the RTE and may be written as 

V'q ,~=x(r)  fEI(r ,  s)--lb(r)]dS2 (5) 
4 ~  

'3 ~ 0 3  

• I n f i e l d  cell 
° Near-boundary cell t3 Boundary ghost cell 

(a) Cell-center control volume for 2D unstructured 
grids 

\ ...... .~-.... S i 
,,/ \\, ~ /  \ 

/ [ . . . . .  
/ ; \ . \  I~ 

,, ........ , /  ' ,--~::"~/ ,.,, 

(b) Angular discretization 
Fig. 1 

q 

Discretization of unstructured finite volume 
method for RTE 
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unknown variables are stored at cell centers. 

Discretization of the angular domain is similar 
to that for the spatial domain. The angular space 
47r at any spatial location is discrctized into dis- 

crete, non-overlapping solid angles co,., the cen- 
troids of which are denoted by the direction vec- 

tor s~. In this study, we use the azimuthal dis- 

cretization stategy with the FVM. As shown in 

Fig. 1 (b) for the Cartesian coordinate system, all 
extents are given equally by A0 and A~b, respec- 

tively. 

3.2 Contrnl volume balance 

For each discrete direction si the discretized 
RTE can be obtained by integrating Eq. (1) over 
a control volume P in Figure 1 (a) and a solid 

angle co~ to yield 

I~=tlj A,D} 
(6) 

O "  ,m" . . 

Here, Ne is the total face number for the cell P,  

A t  is the f - t h  face area, D/; is the product of the 
unit normal vector at the face and the intensity 
direction 8i. The radiative intensities along the 
direction ai and ss are/'~ and Ij, respectively, and 

co~ is the solid angle associated with the direc- 

tion s~, AVe is the volume of the cell P,  M is the 
total number of discrete directions. 

To close Eq. (6) and to incorporate with the 
cell-center unstructured finite volume solver, rela- 

tions are needed between the intensities on the 
cell faces and the cell center ones. One popular 

closure scheme for complicated geometries or grid 
systems is based on the step scheme, which sets the 

downstream face intensity equal to the upstream 
cell-center value (Chai et al., 1995). Applying 
this scheme to the cell P in Fig. l (a ) ,  typical 

relations between face-intensities and cell-center 
values are as follows 

I} = m a x  (A/Dj;, 0 ) I . ~ - m a x ( - A f D } ,  O)lic, (7) 

where Cz is the neighbor cell of the cell P and the 
f - t h  face is the common face between P and Ct, 
and I~, denotes the intensity at the cell C/. Then, 
the final discretized form of Eq. (6) becomes 

~oI ~max O) + ( ~: + ,~) ~,A V, ]#, 
Np a U  (g) 

3.3 Treatment of control angle overhang 
In a general unstructured grid approach, the 

inevitable control-angle overhang happens not 

only at boundaries but also at the interior. To 
address control-angle overhang, in this study, 

the recipes of Murthy and Mathur (1998a) are 

adopted. If the direction i exhibits overhang at 
the face f ,  the incoming and outgoing portions 

of the solid angle are differenced differently. To 
obtain the incoming and outgoing face intensities, 

Eq. (7) is written as 

1} = ~utl l, + ct~I~, (9) 

where 

~,=a: .  f~,f~ ssin OdO aO, a:.s>O 

at .=A. .  L , L  s sin OdO dq5, A , - a ~ O  

Therefore, the problem of computation of the 

overhang angles is to calculate the incoming and 
outgoing radiative fluxes with respect to the in- 

terested cell center. According to pixelating of 
Murthy and Mathur (1998a), the solid angle of 

interest is divided into Nee x Nfe pixels and the 
incoming and outgoing radiative fluxes of over- 

hang face are calculated by the computation over 

all pixels in the control angle. As mentioned by 

Murthy and Mathur (1998a), using this pixelat- 
ing approach, control angle overhang can be com- 

puted up to the pixel resolution. In almost cases, 

computational load of pixelation may be mini- 
mized by pixelating only those control angles that 
exhibit overhang at boundaries without the sacri- 
fice of accuracy. 

3.4 Linear solver 

The discretization procedure leads to a set of 

linear equations relating the value of radiative 
intensity of i - th discrete direction at the ceil cen- 
ter to its cell neighbors: 

aPIi. = ~a, ,d& + b (10) 
n b  
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Here, nb is the numbel: of cell neighbors. The 

intensities associated with other discrete direc- 

tions are included in the b term. In this work, 

a sequential iterative approach is adopted. The 

above discrete set of algebraic equations for each 

direction i is solved, looping through all the di- 

rections until convergence. The solver of the dis- 

cretized equations is based on a Gauss-Seidel  

procedure. 

3.5 Parallelization strategy of radiative 

heat transfer 
Considering the parallelization strategy of the 

RTE, the spatial domain decomposition paralle- 

lization is very attractive for the solution of cou- 

pled reactive fluid f low/heat  transfer problems, 

because the domain decomposition approach is 

usually employed in computational  fluid dynam- 

ics. Therefore, the governing transport equations 

and the RTE can be parailelized in a similar 

fashion. In the spatial domain decomposition 

approach the computational domain is divided 

into a number of sub-domains equal to the num- 

ber of processors. Although the sub-domains do 

not overlap, there is a buffer of halo points added 

to their boundaries, including the virtual boun- 

daries, i.e., interfacial boundaries between neigh- 

boring processors. These halo points are needed 

because the radiation intensities at the cell centers 

are stored in an array, but the radiation intensities 

at cell faces are not. A plane of halo points is 

added to each sub-domain boundary to enable 

the exchange of  data (radiation intensities) at the 

virtual boundaries between neighboring proces- 

sors. More details of treatment of the virtual 

boundary to communicate the information have 

been well documented by Kang (2002). 

4. R e s u l t s  and D i s c u s s i o n  

4.1 Radiation in quadrilateral enclosure 
with isothermal medium 

As the first test problem, the FVM is applied 

to analyze the radiative heat transfer in a quad- 

rilateral enclosure with containing an absorbing- 

emitting medium maintained at a T = Th. The ver- 

tices of the box, in counterclockwise, are (0, 0), 

(2.2, 0), (1.5, 1.2), and (0.5, 1.0). Figure 2(a) 

shows an irregular quadrilateral  enclosure and 

all dimensions are in meters. The black walls are 

kept at 0 K and three absorption coefficients, 

0.1, 1, and 10m -1 are studied. The objective is 

to predict the dimensionless incoming radiative 

flux on the walls and to compare it with the exact 

solution, generated by means of a ray-tracing 

method (Baek et al., 1998). This problem has 

been used by Chai et a1.(1995) and Baek et al. 

(1998) to validate their structured-grid finite vol- 

ume scheme. Murthy and Mathur (1998a) also 
adopted this same problem to validate their finite 

volume scheme by using an unstructured-grid. 

The initial results are obtained using a struc- 

tured mesh of 10X 10 quadrilateral  control vol- 

umes and N o X N ,  of 2x8 .  This discretization 

is identical to that used by Chai et a1.(1995). 

(1.5, 1.2) 

(0, O) (2.2. O) 

(a) 

1 . 2 ~  

o8_K" l ' 

:= 0 4 ~-// * Present  (N+ x N, =2 x 8) ",~ 

/ 
, ~  0.2] -  _ + r = O . l m  ~ 

Dis tance  
(b) 

Fig. 2 A quadrilateral enclosure ; (a) schematic and 
computational grid and (b) dimensionless 
heat fluxes on the bottom wall 
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The numerical  scheme also defaults identically 

to theirs when the step scheme is used on a struc- 

tured quadri la teral  mesh. The dimensionless net 

heat fluxes at the bot tom wall are shown in 

Fig. 2(b) .  Here distance, the length along the 

wall, is measured counterclockwise.  It is seem 

that numerical  results of  various absorpt ion co- 

efficients are well agreed with the exact solutions. 

The departures from the exact solut ion are espe- 

cially high at the corners. 

Using finer structured quadri la teral  meshes and 

a variety of  angular  discretization, the estimated 

errors for a bot tom wall for to= 1.0 m -~ are tabu- 

lated in Table  1. The error is defined as 

Error=--   Is'-f''`x<'c'l f l ,)  
I A  . . . . .  , I 

mesh arrangement  (10X 10). By refining the spa- 

tial grid, numerical  solution progressively ap- 

proaches to the exact solution. Figure  3 shows an 

unstructured t r iangular  mesh arrangement  with 

2684 cells. The corresponding predicted radia- 

tive flux of  the bot tom wall for ~c= 1.0 m -~ is dis- 

played in Figure  4. These unstructured-gr id  re- 

sults are quite close to those for the structured 

quadri lateral  mesh. The numerical  errors for 2 X 

4, 2X8,  4 x 8 ,  and 4X 12 angular  discretizations 

are 5.13, 2.88, 1.26, and 0.56%, respectively. These 

numerical  results clearly indicate that, by uti- 

l izing finer quadri la teral  or  t r iangular  grids and 

finer angular  discretizations, the deviat ions from 

the exact value are considerably decreased. These 

trends are nearly identical to the previous nu- 

where f= is the computed value at point  n,  fn,exact 
is the exact value at the same point, and N is the 

total number  o f  points. When the finer angular  

discretizations are used with a coarse structured 

mesh ( 1 0 X I 0 ) ,  the influence of  the corners is 

not well captured by numerical  solution. These 

numerical  errors mainly stem from the spatial 

discretization error  corresponding to the coarse 

Table I Estimated errors for quadrilateral enclosure 
for K= 1.0 m --~ * 

Mesh No xN~ Error, % 

2X4 10.2 
2X8 4.54 

10X10 
4X8 4.62 
4X 12 3.64 

2 x 4 8.69 
2 X 8 4.27 

20 × 20 
4X8  2.65 
4 x 12 1.65 

2 x 4  5.73 
2X8 3.44 

30 x 30 
4X8  1.36 

4X 12 0.79 

2 X 4 5.00 

2X8 2.83 
40 X 40 

4X8  1.22 

4X 12 0.65 

• Error in dimensionless heat flux for quadrilateral 
mesh. 

::':~:I::~:~:~',?':~:'~?.~.'2L,. ~::.V;Y. J: Y:~2. J:, L~: :' f ! L',' : : ' . / : .Y 
Fig. 3 Quadrilateral enclosure with isothermal me- 

dium, 2684 unstructured triangular mesh 

(1.8 

-~= 0.7 

~ 0 . 6  

,4 
0.5 

0.4 

~I: 0.3 

(1.2 0 

' I ' ' ' I . . . .  I ' ' I ' ] 

:   22' ot12x,i 
* Present (2 × 8) , I  

(4 x 8) _ .  Present 
• Present (4 x 12) L 

Fig. 4 Quadrilateral 

, , i , I , L , I , , , ~ I ~ , , I , 

0.5 1 1.5 2 
Dis tance  

enclosure with isothermal 

medium, heat flux on the bottom wall for 

triangular mesh for x---- 1.0 m -~ 
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merical result (Murthy and Mathur, 1998a). If a 

higher-order  spatial differencing scheme was used 

instead of the step scheme, the spatial error might 

be reduced more rapidly. However, it is widely 

recognized that the step scheme has its advanta- 
ges against a high-order  scheme because the step 

scheme is more stable and sufficiently accurate for 

a fine grid system. Moreover, the splendid adap- 

tability of the unstructured-grid system could 

easily improve the solution quality of  the step 

scheme by the local grid enrichment. 

4.2  R a d i a t i o n  in t e t r a h e d r a l  e n c l o s u r e  

To demonstrate the predicative capabil i ty of 

the present unstructured-grid radiative FVM for 

three-dimensional  complex geometries, we have 

chosen the radiation process of a tetrahedron of 

side L,  which was numerically studied by Murthy 

and Mathur (1998a). The base of  the tetrahedron 

lies on the x-y  plane;  the coordinates (x/L, 
y /L ,  z /L)  of the vertices are (0, 0, 0), (1, 0, 0), 

(0.5, 0.866, 0), and (0.5, 0.288, 0.817). The black 

walls are at T = 0 .  The interior has a fixed tem- 

perature of T---- Th and an optical thickness K L =  

1.0. Figure 5(a) shows the unstructured-grid ar- 

rangement used in this study and 12,627 tetrahe- 

dral cells are used. The dimensionless incoming 

heat flux is computed along the face centerline 

including the side midpoint  (0.75, 0.43, 0) and 

the top vertex (0.5, 0.288, 0.817) for different 

angular discretizations (6X6, and 8X8) ,  with 

and without the boundary pixelation. In this ex- 

ample case, all numerical results using pixelation 

are based on NoexN#e of 8X8. 

As shown in Fig. 5 (b), the all predicted pro- 

files of heat flux along the face centerline are seen 

to agree well with the exact solution. 

Without boundary pixelation, the errors for 

6X6 and 8X8 angular discretizations are 1.98 

and 1.50%, respectively. With boundary pixela- 

tion, the corresponding errors are 1.95 and I. 18%, 

respectively. Numerical results indicate that, with 

the present fine grid system, the pixelation of 

boundary face marginally improves the numerical 

accuracy. Previously as stated by Murthy and 

Mathur (1998a), the use of  the fine mesh reduces 

the spatial errors. For  the finer mesh, Calcula- 

0.35 

0.3 
t .  = 
.~ 0.25 

0.2 

~'~ o.15 

0.1 

~ 0.05 

0(~ ' ' ' 

Fig. 5 

(a) 

• I ' ' I ' I " ~ I . . . .  

Present(6 x 6) \ ~ -  " " " 
• Present(6 x 6,pixelated) /k 

Present(8 x 8) 
• Present(8 x 8,pixelated) 

I , I i i I , I , , , , 

0.2 0.4 1).6 0.8 
Distance 
(b) 

Tetrahedral enclosure; the grid system and 
heat flux variation on face centerline 

tions using the boundary pixelation improves ac- 

curacy somewhat; however, it does not appear 

necessary for practical calculations. 

4 .3  R a d i a t i o n  in a t h r e e - d i m e n s i o n a l  i d e a l -  

i z e d  f u r n a c e  

Next, in order to evaluate the modeling accu- 

racy in the idealized furnace, the present ap- 

proach has been applied to analyze the radia- 

tive heat transfer in three-dimensional rectangul- 

ar combustor proposed by Menguc and Viskanta 

(1985). The model combustor contains an absor- 

bing, emitting, and non-scattering medium with 

x=0.5  m -I. There exists a uniform internal heat 
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release rate of Sh=5.0  l(W/m s in the medium, 

which must satisfy the energy equation, Eq. (4). 

The temperature and emissivity of the hot wall 
at z = 0  are 1,200 K and 0.85 while those of the 

cold wall at z----4 are 400 K and 0.70. At the all 

side wails, their temperature and emissivity are 

given as Tw=900 K and ew=0.7.  Due to the in- 

ternal heat  source ,  th is  p r o b l e m  requ i r e s  an itera- 

tive solution procedure for the energy equation, 

Eq. (4). Figure 6 shows the structure and un- 

structured grid arrangements for the three-di- 

mensional idealized furnace. The structured grid 

has the 2,420 equal-spaced hexagons and the un- 

structured grid involves the 14,068 tetragons and 

242 prisms. The angular domain is divided by 4 X 

4 for the structured grid and by 6 x 6  for the 

unstructured grid, respectively. Because several re- 

sults of by using different radiative models others 

(Menguc and Viskanta, 1985 ; Baek et al., 1988 ; 

Liu et al., 1996) have showed the similar pre- 

dictions, in this work only zone solution was 

selected to test against the present results in Fig. 

6 (Menguc and Viskanta, 1985). 

In Fig. 7(a) ,  the profiles of  temperature are 

displayed along a line (x-axis  direction) with 

• - ~  _ - 4m 
2m 

. '  L, 

(a) 

(b) 
Fig. 6 3D idealized furnace ; (a) structured grid, 

(b) unstructured grid 

y = l . 0 m  for three z locations. At all three z 

locations, numerical results for structured and 

unstructured grids are well agreed with the zone 

solution• In terms of the net radiative wall heat 

flux distribution along a line (x-axis  direction) 
with y =  1.0 m on the hot wall and cold wall, the 

agreement between the present results and the 

zone solution is quite good in Figure 7 (b). These 

numerical results suggest that the present unstruc- 

tured-grid approach has the capability to sim- 

ulate the radiative heat transfer in the geome- 
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Fig. 7 Compar i sons  of  (a) temperature distr ibution 

at different z locations and (b) radiative wall 

heat flux distr ibutions at the hot and cold 

walls 
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trically and physically complex practical combus- 

tors. 

4.4 Coupled radiat ion and natura l  convec-  

t ion in a square enc losure  

The radiative heat transfer interacts strongly 

with convection in many practical thermal/f luid 
flow systems. In modeling convection-radiat ion 

interactions for a radiatively participating fluid, 

the efficient and accurate numerical model to be 

compatible with the C F D  code is needed to pre- 

dict the radiative transfer through the medium. 
To check the accuracy and numerical efficiency 

of the parallel  unstructured-grid flow solver and 

radiative model, the present approach has been 

applied to analyze the coupling process of buoy- 

ancy and participating radiation in a square 

enclosure, which is showed schematically in Fig. 8. 

This validation case was previously analyzed 

by Yucel et a1.(1989), who used the SN discrete 

ordinates method. Murthy and Mathur (1998a) 

also validated the same problem by utilizing the 

unstructured radiative FVM. The fluid is New- 

tonian and incompressible. In order to limit the 

number of independent parameters, all physical 

properties are taken as constant except for the 

densi ty .  The flow is assumed to be laminar, 

steady, and two-dimensional.  The working direc- 

tion of  gravity is downward. With these assump- 

tions, the equations for the conservation of mass, 

momentum, and energy can be transformed to the 

corresponding equations of dimensionless form, 

Cooled Surface. T 

Heated Surface, T~, 

I Gravity 

A d i a b a t i c  W a l l  
Fig. 9 

Fig. 8 Schematic representation of the physical 
system 

which are illustrated well by Yucel et al.(1989). 

To consider the gravity effect, the Boussinesq 

approximation was used in the buoyancy terms to 
allow for the variation of density with tempera- 

ture (Kim et al., 2002). 

In this square enclosure problem of  Fig. 8, the 

left wall is at the cold-temperature condition, Tc 
and the right wall is at the hot-temperature con- 

dition, Zh. The top and bottom walls are in- 

sulated. The enclosure is filled with an absorbing 

and emitting gas. Computations are made for 

Ra=5 × 106, P r  =0.72, To/( Th-- To) = 1.5, KL = 

1.0, and Pl=KL/(4dZo a) =0.02. Here T0 is equal 

to 0.5( Th+ Tc), and L denotes the length of the 

side. 

The mesh-arrangement used in all computa- 

tions is the same as the 7666 triangular cells with 

4-part i t ioned domains shown in Fig. 9(a) .  In 

e~ 

rll  

(a) 
i i 

3 

25 

2 
/ J "  

1.5 / /  

Number of Processors 
(b) 

Coupled convection and radiation in square 
enclosure, composed of 7666 cells totally; 
(a) 4-partitioned domains for parallel com- 
putation, (b) parallel efficiency of coupled 
convection and radiation 
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order to evaluate the parallel  efficiency for an- 

alyzing the coupled convection and radiation, 

four computations are carried out for the different 

number of the parallel  processors, which is same 

as the number of partit ioned domains. In Fig. 

9(b),  in terms of the computational time, the 

parallel efficiencies are displayed to demonstrate 

the speed-up tendency with respect to the single- 

processor computation. It can be clearly seen that 

the parallel efficiency for analyzing only the con- 

vection process is much higher, compared to the 

convection-radiation coupled problem. This re- 
sult could be explained by the message-passing 

0.3 

0.2 

0.I 

0 

-0. I 

-0.2 

-0.3~ 

0.4 
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Fig. 10 
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y m  
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I I I 

' I 
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. . . . . . . . . . . . .  Murthy et al 

Present (2 x 81 
, i i 1 i I , , I I 

0,2 0.4 0.6 0.8 
xFL 

(b) 
(a) U-velocity along vertical centerline, 
(b) V-velocity along horizontal centerline 

load of the RTE, which is increased according 

to the number of solid angles, N0xN~.  Even if 

these results suggest that the computational load 

for analyzing radiation could be much higher 

especially for the fine grid system, it is obvious 

that the parallelization procedure with the en- 

hanced optimization will considerably relax the 

computational  load up to the certain degree. Re- 

gardless of number of  processors, the present 

numerical results for all cases are nearly identical. 

Figure 10 shows a plot of  the normalized u-  

velocity along the vertical centerline and the nor- 
malized v-velocity along the horizontal center- 

line, respectively. Numerical results indicate that 

the predicted velocity profiles are almost same as 

those obtained by Yucel et a1.(1989) and Murthy 

and Mathur (1998a). However, there exist the 

marginally small differences between the present 

prediction and the previous computations. The 

marginal differences are considered to come main- 

ly from using the different flow solver. 

5. Conclusions  

An unstructured finite volume method has been 

developed to numerically analyze the radiative 

heat transfer of the complex practical thermal-  

fluid flow systems. The validation cases include 

the radiative heat transfer in quadrilateral enclo- 

sure with isothermal medium, tetrahedral enclo- 

sures, a three-dimensional idealized furnace, as 

well as convection-coupled radiative heat transfer 

in a square enclosure. Based on numerical results 

obtained in this study, the following conclusion 

can be drawn. 

(1) Numerical results for the quadrilateral en- 

closure with isothermal medium are well agreed 

with the exact solutions even if the departures 

from the exact solution are relatively high at the 

wall corners. By utilizing the refined grid and also 

fine angular discretization, the deviations at wall 

corners are considerably decreased. 

(2) In case of  the tetrahedral enclosure, the 

predicted profiles of heat flux along the face cen- 

terline are well agreed with the previous results. 

Numerical results also indicate that, with the fine 
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grid system, the pixelation of boundary face 

slightly improves the numerical accuracy. 

(3) At all three z locations, numerical results 

for structured and unstructured grids are well 

agreed with the zone solution for a three-dimen- 

sional idealized furnace. In terms of the net ra- 
diative wall heat flux distribution at y =  1.0 m, 

the agreement between the present results and 
the zone solution is quite good. These numerical 

results suggest that the present unstructured-grid 
approach has the capability to simulate the ra- 

diative heat transfer in the geometrically and 

physically complex practical combustors. 
(4) The parallel efficiency for anaIyzing only 

the convection process is much higher, compar- 

ed to the convection-radiation coupled problem. 

Even if the computational load for analyzing 

radiation could be higher especially for the fine 
grid system, it is expected that the paraltelization 

procedure with the enhanced optimization could 
considerably reduce the computational load up 

to the certain degree. Regardless of number of 

processors, the present numerical results for all 

cases are nearly identical to the previous results. 
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